Search Results - "McDonald's

Refine Results
  1. 261
  2. 262
  3. 263
  4. 264

    Virtually embedded the librarian in an online environment

    Table of Contents: “…Hofer and Karen Munro -- Linking to course-specific and subject-specific libguides from Blackboard / Pru Morris and Deirdre R. McDonald -- MOOCs : getting involved / Elizabeth Leonard and Erin McCaffrey.…”
    Click Here to View Status and Holdings.
    Unknown
  5. 265
  6. 266
  7. 267
  8. 268

    Methods for the discovery and characterization of G protein-coupled receptors

    Published 2011
    Table of Contents: “…Bohn and Patricia H. McDonald -- |t Characterizing molecular mobility and membrane interactions of G protein-coupled receptors / |r Vladana Vukojevice, Yu Ming, and Lars Terenius -- |t Using RNA interference to downregulate G protein-coupled receptors / |r Philippe Sarret ... …”
    Click Here to View Status and Holdings.
    Book
  9. 269

    Predicting Heart Failure Invasive, Non-Invasive, Machine Learning No Artificial Intelligence Based Methods

    Published 2022
    Table of Contents: “…Preface vii Abbreviations ix Acknowledgment xvii 1 Invasive, Non-Invasive, Machine Learning, and Artificial Intelligence Based Methods for Prediction of Heart Failure 1Hidayet Takci 2 Conventional Clinical Methods for Predicting Heart Disease 23Aisha A-Mohannadi, Jayakanth Kunhoth, Al Anood Najeeb, Somaya Al-Maadeed, and Kishor Kumar Sadasivuni 3 Types of Biosensors and their Importance in Cardiovascular Applications 47S Irem Kaya, Leyla Karadurmus, Ahmet Cetinkaya, Goksu Ozcelikay, and Sibel A Ozkan 4 Overview and Challenges of Wireless Communication and Power Transfer for Implanted Sensors 81Mohamed Zied Chaari and Somaya Al-Maadeed 5 Minimally Invasive and Non-Invasive Sensor Technologies for Predicting Heart Failure: An Overview 109Huseyin Enes Salman, Mahmoud Khatib A.A Al-Ruweidi, Hassen M Ouakad, and Huseyin C Yalcin 6 Artificial Intelligence Techniques in Cardiology: An Overview 139Ikram-Ul Haq and Bo Xu 7 Utilizing Data Mining Classification Algorithms for Early Diagnosis of Heart Diseases 155Ahmad Mousa Altamimi and Mohammad Azzeh 8 Applications of Machine Learning for Predicting Heart Failure 171Sabri Boughorbel, Yassine Himeur, Huseyin Enes Salman, Faycal Bensaali,Faisal Farooq, and Huseyin C Yalcin 9 Machine Learning Techniques for Predicting and Managing Heart Failure 189Dafni K Plati, Evanthia E Tripoliti, Georgia S Karanasiou, Aidonis Rammos,Aris Bechlioulis, Chris J Watson, Ken McDonald, Mark Ledwidge, Yorgos Goletsis, Katerina K Naka, and Dimitrios I Fotiadis 10 Clinical Applications of Artificial Intelligence in Early and Accurate Detection of Low- Concentration CVD Biomarkers 227Meena Laad, Sajna M.S, Kishor Kumar Sadasivuni, and Sadiya Waseem 11 Commercial Non-Invasive and Invasive Devices for Heart Failure Prediction: A Review 243Jayakanth Kunhoth, Nandhini Subramanian, and Ahmed Bouridane 12 Artificial Intelligence Based Commercial Non-Invasive and Invasive Devices for Heart Failure Diagnosis and Prediction 269Kanchan Kulkarni, Eric M Isselbacher, and Antonis A Armoundas 13 Future Techniques and Perspectives on Implanted and Wearable Heart Failure Detection Devices 295Muhammad E.H Chowdhury, Amith Khandaker, Yazan Qiblawey, Fahmida Haque, Maymouna Ezeddin, Tawsifur Rahman, Nabil Ibtehaz, and Khandaker Reajul Islam Index 321…”
    Click Here to View Status and Holdings.
    Book
  10. 270

    PREDICTING HEART FAILURE INVASIVE, NON-INVASIVE, MACHINE LEARNING AND ARTIFICIAL INTELLIGENCE BASED METHODS

    Published 2022
    Table of Contents: “…Preface vii Abbreviations ix Acknowledgment xvii 1 Invasive, Non-Invasive, Machine Learning, and Artificial Intelligence Based Methods for Prediction of Heart Failure 1Hidayet Takci 2 Conventional Clinical Methods for Predicting Heart Disease 23Aisha A-Mohannadi, Jayakanth Kunhoth, Al Anood Najeeb, Somaya Al-Maadeed, and Kishor Kumar Sadasivuni 3 Types of Biosensors and their Importance in Cardiovascular Applications 47S Irem Kaya, Leyla Karadurmus, Ahmet Cetinkaya, Goksu Ozcelikay, and Sibel A Ozkan 4 Overview and Challenges of Wireless Communication and Power Transfer for Implanted Sensors 81Mohamed Zied Chaari and Somaya Al-Maadeed 5 Minimally Invasive and Non-Invasive Sensor Technologies for Predicting Heart Failure: An Overview 109Huseyin Enes Salman, Mahmoud Khatib A.A Al-Ruweidi, Hassen M Ouakad, and Huseyin C Yalcin 6 Artificial Intelligence Techniques in Cardiology: An Overview 139Ikram-Ul Haq and Bo Xu 7 Utilizing Data Mining Classification Algorithms for Early Diagnosis of Heart Diseases 155Ahmad Mousa Altamimi and Mohammad Azzeh 8 Applications of Machine Learning for Predicting Heart Failure 171Sabri Boughorbel, Yassine Himeur, Huseyin Enes Salman, Faycal Bensaali,Faisal Farooq, and Huseyin C Yalcin 9 Machine Learning Techniques for Predicting and Managing Heart Failure 189Dafni K Plati, Evanthia E Tripoliti, Georgia S Karanasiou, Aidonis Rammos,Aris Bechlioulis, Chris J Watson, Ken McDonald, Mark Ledwidge, Yorgos Goletsis, Katerina K Naka, and Dimitrios I Fotiadis 10 Clinical Applications of Artificial Intelligence in Early and Accurate Detection of Low- Concentration CVD Biomarkers 227Meena Laad, Sajna M.S, Kishor Kumar Sadasivuni, and Sadiya Waseem 11 Commercial Non-Invasive and Invasive Devices for Heart Failure Prediction: A Review 243Jayakanth Kunhoth, Nandhini Subramanian, and Ahmed Bouridane 12 Artificial Intelligence Based Commercial Non-Invasive and Invasive Devices for Heart Failure Diagnosis and Prediction 269Kanchan Kulkarni, Eric M Isselbacher, and Antonis A Armoundas 13 Future Techniques and Perspectives on Implanted and Wearable Heart Failure Detection Devices 295Muhammad E.H Chowdhury, Amith Khandaker, Yazan Qiblawey, Fahmida Haque, Maymouna Ezeddin, Tawsifur Rahman, Nabil Ibtehaz, and Khandaker Reajul Islam Index 321…”
    Click Here to View Status and Holdings.
    Book
  11. 271
  12. 272
  13. 273
  14. 274