Multivariable Calculus with Applications

This text in multivariable calculus fosters comprehension through meaningful explanations. Written with students in mathematics, the physical sciences, and engineering in mind, it extends concepts from single variable calculus such as derivative, integral, and important theorems to partial derivativ...

Full description

Saved in:
Bibliographic Details
Main Authors: Lax, Peter D. (Author), Terrell, Maria Shea (Author)
Format: Book
Language:English
Published: Cham, Switzerland Springer International Publishing Imprint: Springer 2017
©2017
Subjects:
Online Access:Click Here to View Status and Holdings.
Tags: Add Tag
No Tags, Be the first to tag this record!

MARC

LEADER 00000nam a2200000#i 4501
001 wils-979556
005 2022311122536
008 220817t2017 SZ a## ##001 ##eng|D
020 # # |a 9783030089139  |q paperback 
040 # # |a DLC  |b eng  |d UiTM  |e rda 
041 0 # |a eng 
090 0 0 |a QA150  |b .L39 2017 
100 1 # |a Lax, Peter D.  |e author 
245 1 0 |a Multivariable Calculus with Applications  |c Peter D. Lax, Maria Shea Terrell 
264 # 1 |a Cham, Switzerland  |b Springer International Publishing  |b Imprint: Springer  |c 2017 
264 # 1 |c ©2017 
300 # # |a viii, 483 pages  |b illustrations  |c 24 cm 
336 # # |a text  |2 rdacontent 
337 # # |a unmediated  |2 rdamedia 
338 # # |a volume  |2 rdacarrier 
500 # # |a Includes index 
505 0 # |a 1. Vectors and matrices -- 2. Functions -- 3. Differentiation -- 4. More about differentiation -- 5. Applications to motion -- 6. Integration -- 7. Line and surface integrals -- 8. Divergence and Stokes' Theorems and conservation laws -- 9. Partial differential equations -- Answers to selected problems -- Index. 
520 # # |a This text in multivariable calculus fosters comprehension through meaningful explanations. Written with students in mathematics, the physical sciences, and engineering in mind, it extends concepts from single variable calculus such as derivative, integral, and important theorems to partial derivatives, multiple integrals, Stokes' and divergence theorems. Students with a background in single variable calculus are guided through a variety of problem solving techniques and practice problems. Examples from the physical sciences are utilized to highlight the essential relationship between calculus and modern science. The symbiotic relationship between science and mathematics is shown by deriving and discussing several conservation laws, and vector calculus is utilized to describe a number of physical theories via partial differential equations. Students will learn that mathematics is the language that enables scientific ideas to be precisely formulated and that science is a source for the development of mathematics. 
526 0 # |a CS249  |b MAT491  |5 CS 
526 0 # |a MAT491  |b ED249  |5 ED 
526 0 # |a Calculus III  |b Bachelor Of Science (Hons) Mathematics  |5 Faculty of Computer Science And Mathematics 
650 # 0 |a Analysis (Mathematics) 
650 # 0 |a Applied mathematics 
650 # 0 |a Engineering mathematics 
650 # 0 |a Mathematical analysis 
700 1 # |a Terrell, Maria Shea  |e author 
856 4 0 |z Click Here to View Status and Holdings.  |u https://opac.uitm.edu.my/opac/detailsPage/detailsHome.jsp?tid=979556 
998 # # |a 00264#1a006.2.2||00264#1b006.2.2||00264#1b002.8.4||01264#1a006.2.2||01264#1b006.2.2||00300##a006.2.2||00300##b006.2.2||00300##c006.2.2||00500##a006.2.2||00520##a006.2.2||00520##b006.2.2||