Fundamentals of Data Visualization A Primer on Making Informative and Compelling Figures

"Effective visualization is the best way to communicate information from the increasingly large and complex datasets in the natural and social sciences. But with the increasing power of visualization software today, scientists, engineers, and business analysts often have to navigate a bewilderi...

Full description

Saved in:
Bibliographic Details
Main Author: Wilke, C. (Claus) (Author)
Format: Book
Language:English
Published: Sebastopol, CA O'Reilly Media, Inc, USA 2019
Edition:First edition
Subjects:
Online Access:Click Here to View Status and Holdings.
Tags: Add Tag
No Tags, Be the first to tag this record!

MARC

LEADER 00000nam a2200000#i 4501
001 wils-975691
005 20220710645
008 220511t2019 CAU a## ##001 #deng|D
020 # # |a 1492031089  |q paperback 
020 # # |a 9781492031086  |q paperback 
040 # # |a YDX  |b eng  |d UiTM  |e rda 
041 0 # |a eng 
090 0 0 |a QA76.9.I52  |b W55 2019 
100 1 # |a Wilke, C.  |e author  |q (Claus) 
245 1 0 |a Fundamentals of Data Visualization  |b A Primer on Making Informative and Compelling Figures  |c Claus O. Wilke 
250 # # |a First edition 
264 # 1 |a Sebastopol, CA  |b O'Reilly Media, Inc, USA  |c 2019 
264 # 4 |c ©2019 
300 # # |a xvi, 370 pages  |b color illustrations, color maps  |c 24 cm 
336 # # |a text  |2 rdacontent 
336 # # |a still image  |2 rdacontent 
336 # # |a cartographic image  |2 rdacontent 
337 # # |a unmediated  |2 rdamedia 
338 # # |a volume  |2 rdacarrier 
504 # # |a Includes bibliographical references (pages 357-359) and index 
505 0 # |a Introduction : ugly, bad, and wrong figures -- Part 1. From data to visualization. Visualizing data : mapping data onto aesthetics -- Coordinate systems and axes -- Color scales -- Directory of visualizations -- Visualizing amounts -- Visualizing distributions : histograms and density plots -- Visualizing distributions : empirical cumulative distribution functions and Q-Q plots -- Visualizing many distributions at once -- Visualizing proportions -- Visualizing nested proportions -- Visualizing associations among two or more quantitative variables -- Visualizing time series and other functions of an independent variable -- Visualizing trends -- Visualizing geospatial data -- Visualizing uncertainty -- Part 2. Principles of figure design. The principle of proportional ink -- Handling overlapping points -- Common pitfalls of color use -- Redundant coding -- Multipanel figures -- Titles, captions, and tables -- Balance the data and the context -- Use larger axis labels -- Avoid line drawings -- Don't go 3D -- Part 3. Miscellaneous topics. Understanding the most commonly used image file formats -- Choosing the right visualization software -- Telling a story and making a point. 
520 # # |a "Effective visualization is the best way to communicate information from the increasingly large and complex datasets in the natural and social sciences. But with the increasing power of visualization software today, scientists, engineers, and business analysts often have to navigate a bewildering array of visualization choices and options. This practical book takes you through many commonly encountered visualization problems, and it provides guidelines on how to turn large datasets into clear and compelling figures. What visualization type is best for the story you want to tell? How do you make informative figures that are visually pleasing? Author Claus O. Wilke teaches you the elements most critical to successful data visualization."--Provided by publisher 
526 0 # |a IMCNEW  |b IM245  |5 IM 
526 0 # |a Data Visualization  |b Bachelor of Information Science (Hons) Information Systems Management  |5 Faculty of Information Management 
650 # 0 |a Information visualization 
650 # 0 |a Visual analytics 
650 # 0 |a Visualization  |x Data processing 
650 # 2 |a Data Visualization 
856 4 0 |z Click Here to View Status and Holdings.  |u https://opac.uitm.edu.my/opac/detailsPage/detailsHome.jsp?tid=975691 
998 # # |a 00250##a006.2.2||00250##b006.2.2||00264#1a006.2.2||00264#1b006.2.2||00300##a006.2.2||00300##b006.2.2||00300##c006.2.2||00520##a006.2.2||00520##b006.2.2||