Dynamical Biostatistical Models

Dynamical Biostatistical Models presents statistical models and methods for the analysis of longitudinal data. The book focuses on models for analyzing repeated measures of quantitative and qualitative variables and events history, including survival and multistate models. Most of the advanced metho...

Full description

Saved in:
Bibliographic Details
Main Authors: Commenges, Daniel (Author), Jacqmin-Gadda, Hélène 1968- (Author)
Format: Book
Language:English
Published: Boca Raton CRC Press/Taylor & Francis 2016
Series:Chapman & Hall/CRC biostatistics series
Subjects:
Online Access:Click Here to View Status and Holdings.
Tags: Add Tag
No Tags, Be the first to tag this record!

MARC

LEADER 00000nam a2200000#i 4501
001 wils-944030
005 2019430102416
008 t2016 # 1 d
020 # # |a 9781498729673  |q hardback 
040 # # |a DLC  |d UiTM  |e rda 
041 0 # |a eng 
090 0 0 |a QH323.5  |b .C6435 2016 
100 1 # |a Commenges, Daniel  |e author 
245 1 0 |a Dynamical Biostatistical Models  |c Daniel Commenges, University of Bordeaux, France, Hélène Jacqmin-Gadda, University of Bordeaux, France 
264 # 1 |a Boca Raton  |b CRC Press/Taylor & Francis  |c 2016 
264 # 4 |c ©2016 
300 # # |a xxxiv, 374 pages  |c 25 cm 
336 # # |a text  |2 rdacontent 
337 # # |a unmediated  |2 rdamedia 
338 # # |a volume  |2 rdacarrier 
490 1 # |a Chapman & Hall/CRC biostatistics series  |v 86 
500 # # |a "A CRC title." 
504 # # |a Includes bibliographical references and index 
520 # # |a Dynamical Biostatistical Models presents statistical models and methods for the analysis of longitudinal data. The book focuses on models for analyzing repeated measures of quantitative and qualitative variables and events history, including survival and multistate models. Most of the advanced methods, such as multistate and joint models, can be applied using SAS or R software. The book describes advanced regression models that include the time dimension, such as mixed-effect models, survival models, multistate models, and joint models for repeated measures and time-to-event data. It also explores the possibility of unifying these models through a stochastic process point of view and introduces the dynamic approach to causal inference. Drawing on much of their own extensive research, the authors use three main examples throughout the text to illustrate epidemiological questions and methodological issues. Readers will see how each method is applied to real data and how to interpret the results 
650 # 0 |a Biometry 
650 # 0 |a Epidemiology  |x Statistical methods 
650 # 0 |a Medical statistics 
700 1 # |a Jacqmin-Gadda, Hélène  |d 1968-  |e author 
830 # 0 |a Chapman & Hall/CRC biostatistics series 
856 4 0 |z Click Here to View Status and Holdings.  |u https://opac.uitm.edu.my/opac/detailsPage/detailsHome.jsp?tid=944030 
998 # # |a 00264#1a002.8.2||00264#1b002.8.4||00300##a003.4.1||00300##b003.6.1||00300##c003.5.1||00500##a002.17.2||00520##a007.2||00520##b007.2||