Fundamentals of Finite Element Analysis Linear Finite Element Analysis

This book constitutes the first volume in a two-volume set that introduces readers to the theoretical foundations and the implementation of the finite element method (FEM). The first volume focuses on the use of the method for linear problems. A general procedure is presented for the finite element...

Full description

Saved in:
Bibliographic Details
Main Author: Koutromanos, Ioannis (Author)
Other Authors: McClure, James 1981- (Contributor), Roy, Christopher J. (Contributor)
Format: Book
Language:English
Published: Hoboken Wiley 2018
Subjects:
Online Access:Click Here to View Status and Holdings.
Tags: Add Tag
No Tags, Be the first to tag this record!

MARC

LEADER 00000nam a2200000#i 4501
001 wils-939271
005 2019318345
008 t2018 -US dg# ##001 ##eng#D
020 # # |a 9781119260080  |q paperback 
040 # # |a DLC  |d UiTM  |e rda 
041 0 # |a eng 
090 0 0 |a TA347.F5  |b K68 2017 
100 1 # |a Koutromanos, Ioannis  |e author 
245 1 0 |a Fundamentals of Finite Element Analysis  |b Linear Finite Element Analysis  |c Ioannis Koutromanos 
264 # 1 |a Hoboken  |b Wiley  |c 2018 
264 # 4 |c ©2018 
300 # # |a xviii, 710 pages  |b charts  |c 25 cm 
336 # # |a text  |2 rdacontent 
337 # # |a unmediated  |2 rdamedia 
338 # # |a volume  |2 rdacarrier 
500 # # |a Includes bibliographies and index 
520 # # |a This book constitutes the first volume in a two-volume set that introduces readers to the theoretical foundations and the implementation of the finite element method (FEM). The first volume focuses on the use of the method for linear problems. A general procedure is presented for the finite element analysis (FEA) of a physical problem, where the goal is to specify the values of a field function. First, the strong form of the problem (governing differential equations and boundary conditions) is formulated. Subsequently, a weak form of the governing equations is established. Finally, a finite element approximation is introduced, transforming the weak form into a system of equations where the only unknowns are nodal values of the field function. The procedure is applied to one-dimensional elasticity and heat conduction, multi-dimensional steady-state scalar field problems (heat conduction, chemical diffusion, flow in porous media), multi-dimensional elasticity and structural mechanics (beams/shells), as well as time-dependent (dynamic) scalar field problems, elastodynamics and structural dynamics. Important concepts for finite element computations, such as isoparametric elements for multi-dimensional analysis and Gaussian quadrature for numerical evaluation of integrals, are presented and explained. Practical aspects of FEA and advanced topics, such as reduced integration procedures, mixed finite elements and verification and validation of the FEM are also discussed. 
526 0 # |a EC701  |b ECS718  |5 EC 
526 0 # |a SARJANA KEJURUTERAAN MEKANIKAL  |b FINITE ELEMENTS IN MECHANICS  |5 FAKULTI KEJURUTERAAN MEKANIKAL 
650 # 0 |a Finite element method 
700 0 # |a McClure, James  |d 1981-  |e contributor. 
700 0 # |a Roy, Christopher J.  |e contributor. 
856 4 0 |z Click Here to View Status and Holdings.  |u https://opac.uitm.edu.my/opac/detailsPage/detailsHome.jsp?tid=939271 
964 # # |c BOK  |d 01