Mining of Massive Datasets

Written by leading authorities in database and Web technologies, this book is essential reading for students and practitioners alike. The popularity of the Web and Internet commerce provides many extremely large datasets from which information can be gleaned by data mining. This book focuses on prac...

Full description

Saved in:
Bibliographic Details
Main Authors: Leskovec, Jure (Author), Rajaraman, Anand (Author), Ullman, Jeffrey David 1942- (Author)
Format: Book
Language:English
Published: New York, NY CAMBRIDGE UNIVERSITY PRESS 2020
Edition:Third Edition
Subjects:
Online Access:Click Here to View Status and Holdings.
Tags: Add Tag
No Tags, Be the first to tag this record!

MARC

LEADER 00000nam a2200000#i 4501
001 wils-916816
005 202062112507
006 a ag# ##001 |#
007 ta
008 201215t2020 NYU ag# ##001 |#eng#D
020 # # |a 9781108476348  |q hardback 
040 # # |a DLC  |b eng  |c DLC  |d UiTM  |e rda 
041 0 # |a eng 
090 0 0 |a HF5415.125  |b .L47 2020 
100 1 # |a Leskovec, Jure  |e author 
245 1 0 |a Mining of Massive Datasets  |c JURE LESKOVEC, ANAND RAJARAMAN, JEFFREY DAVID ULLMAN 
250 # # |a Third Edition 
264 # 1 |a New York, NY  |b CAMBRIDGE UNIVERSITY PRESS  |c 2020 
264 # 4 |c ©2020 
300 # # |a xi, 553 pages  |b illustrations  |c 26 cm 
336 # # |a text  |2 rdacontent 
337 # # |a unmediated  |2 rdamedia 
338 # # |a volume  |2 rdacarrier 
504 # # |a Includes bibliographies and index 
520 # # |a Written by leading authorities in database and Web technologies, this book is essential reading for students and practitioners alike. The popularity of the Web and Internet commerce provides many extremely large datasets from which information can be gleaned by data mining. This book focuses on practical algorithms that have been used to solve key problems in data mining and can be applied successfully to even the largest datasets. It begins with a discussion of the MapReduce framework, an important tool for parallelizing algorithms automatically. The authors explain the tricks of locality-sensitive hashing and stream-processing algorithms for mining data that arrives too fast for exhaustive processing. Other chapters cover the PageRank idea and related tricks for organizing the Web, the problems of finding frequent itemsets, and clustering. This third edition includes new and extended coverage on decision trees, deep learning, and mining social-network graphs. 
526 0 # |a IJAZAH SARJANA MUDA SAINS KOMPUTER  |b FAKULTI SAINS KOMPUTER  |5 FAKULTI SAINS KOMPUTER 
526 0 # |a MKM775  |b IM772  |5 IM 
526 0 # |a Knowledge Discovery: Text And Data Mining  |b Master in Library Science  |5 Faculty of Information Management 
546 # # |a In English 
650 # 0 |a Data mining 
700 1 # |a Rajaraman, Anand  |e author 
700 1 # |a Ullman, Jeffrey David  |d 1942-  |e author 
856 4 0 |z Click Here to View Status and Holdings.  |u https://opac.uitm.edu.my/opac/detailsPage/detailsHome.jsp?tid=916816 
998 # # |a 00250##a006.2.2||00250##b006.2.2||00264#1a006.2.2||00264#1b006.2.2||00300##a006.2.2||00300##b006.2.2||00300##c006.2.2||00520##a006.2.2||00520##b006.2.2||00546##a006.2.2||