Arctic offshore engineering

There is an increasing need to construct engineering structures in the Arctic sea. The requirement is principally generated by the oil and gas industry, because of the substantial reserves that are known to existing offshore in the Beaufort Sea, the Caspian Sea, and the Barents Sea. This title deals...

Full description

Saved in:
Bibliographic Details
Main Author: Palmer, Andrew 1938- Andrew Clennel
Other Authors: Croasdale, Ken
Format: Unknown
Published: Singapore World Scientific Publishing 2013
Subjects:
Online Access:Click Here to View Status and Holdings.
Tags: Add Tag
No Tags, Be the first to tag this record!
Table of Contents:
  • Machine generated contents note: 1.The Human Context
  • 1.1.Introduction
  • 1.2.The Peoples Native to the Arctic
  • 1.3.Explorers
  • 1.4.Developers
  • 1.5.Outsiders
  • 2.The Physical and Biological Environment
  • 2.1.Climate
  • 2.2.Permafrost and Land Ice
  • 2.3.Sea Ice
  • 2.3.1.Introduction
  • 2.3.2.Oceanographic Context
  • 2.3.3.The Structure of Ice
  • 2.3.4.Ice Formation
  • 2.4.Gathering Data about Sea Ice
  • 2.4.1.Identifying Needs
  • 2.4.2.Planning
  • 2.4.3.Methods for Ice Thickness
  • 2.4.4.Ice Movement
  • 2.4.5.Ice Strength and Related Parameters
  • 2.5.Biology
  • 3.Ice Mechanics
  • 3.1.Introduction
  • 3.2.Creep
  • 3.3.Fracture
  • 3.3.1.Introduction
  • 3.3.2.Linear Elastic Fracture Mechanics
  • 3.3.3.Nonlinear Fracture Mechanics
  • 3.4.Elasticity
  • 3.5.Plasticity
  • 3.6.Broken Ice
  • 3.7.In-situ Rubble Tests
  • 3.7.1.Overview
  • 3.7.2.The Direct Shear Test
  • 3.7.3.The Punch Shear Test
  • 3.7.4.The Pull Up Test
  • 3.7.5.Summary of Results of in-situ Tests
  • Contents note continued: 3.7.6.Translation of Rubble Shear Strength into a Bearing Pressure (or pseudo crushing strength)
  • 3.7.7.Confined Compression Test (indentation test) on Ice Rubble
  • 3.8.Model Ice
  • 4.Ice Forces on Structures in the Sea
  • 4.1.Introduction
  • 4.2.Alternative Design Concepts
  • 4.3.Ice Forces
  • 4.4.Ice Forces on Vertical-sided Structures
  • 4.4.1.Alternative Modes
  • 4.4.2.Creep
  • 4.4.3.Buckling
  • 4.4.4.Crushing: A Simple but Incorrect Approach
  • 4.4.5.Crushing: Evidence from Measurements
  • 4.4.6.Crushing: Empirical Representations of the Data
  • 4.4.7.Crushing: Theory
  • 4.5.Sloping-sided Structures
  • 4.5.1.Introduction
  • 4.5.2.Mechanics of Ice Interaction with Sloping-sided Structures
  • 4.5.3.Adfreeze Effects
  • 4.5.4.Experimental and Full Scale Data
  • 4.5.5.Modifications for very Thick Ice
  • 4.5.6.Velocity Effects
  • 4.6.Local Ice Pressures
  • 4.7.Ice Encroachment
  • 4.8.Model Tests
  • 4.9.Ice-induced Vibrations
  • Contents note continued: 4.10.Ice Load Measurements on Platforms
  • 5.Broken Ice, Pressure Ridges and Ice Rubble
  • 5.1.Introduction
  • 5.2.Formation of Ridges
  • 5.3.Limit-Force Calculations
  • 5.4.Multi-Year Ridges
  • 5.4.1.Introduction
  • 5.4.2.Ridge Breaking Analysis
  • 5.5.Loads due to First-year Ridges
  • 5.5.1.Introduction
  • 5.5.2.Ridge Interaction with Vertical Structures
  • 5.5.3.First-year Ridge Interaction on Upward Sloping Structures
  • 5.5.4.First Year Ridge Interaction on Downward Sloping Structures
  • 5.6.Structures in Shallow Water
  • 5.6.1.Effects of Ice Rubble on Ice Loads
  • 5.6.2.First-year Ridge Loads in Shallow Water
  • 5.7.Multi-leg and Multi-hulled Platforms
  • 5.7.1.Multi-leg (with Vertical Legs)
  • 5.7.2.Multi-leg Structure with Conical Collars on the Legs
  • 5.7.3.Multi-caisson Systems and Ice Barriers
  • 5.8.Limit momentum (limit energy) Ice Loads
  • 5.8.1.Principles and Application to a Vertical Structure
  • 5.8.2.Sloping Structures
  • Contents note continued: 5.8.3.Iceberg Impact Loads
  • 6.Ice Forces on Floating Platforms
  • 6.1.Introduction
  • 6.2.Background to Use of Floaters in Sea Ice
  • 6.3.Loads on Floaters in Unmanaged Ice
  • 6.4.Loads on Floaters in Managed Ice
  • 6.5.Calibration against the Kulluk Data
  • 6.6.Influencing Parameters
  • 6.7.Typical Managed Ice Loads
  • 7.Arctic Marine Pipelines and Export Systems.