Time series modeling of neuroscience data

Recent advances in brain science measurement technology have given researchers access to very large-scale time series data such as EEG/MEG data (20 to 100 dimensional) and fMRI (140,000 dimensional) data. To analyze such massive data, efficient computational and statistical methods are required. Ti...

Full description

Saved in:
Bibliographic Details
Main Author: Ozaki, Tohru 1944- (Author)
Format: Book
Language:English
Published: Boca Raton, FL CRC Press 2012
Series:Interdisciplinary statistics
Subjects:
Online Access:Click Here to View Status and Holdings.
Tags: Add Tag
No Tags, Be the first to tag this record!

MARC

LEADER 00000nam a2200000#i 4501
001 wils-460223
005 202331281555
008 230412t2012 -US a# #001 deng D
020 # # |a 9781420094602  |q hardback 
020 # # |a 1420094602  |q hardback 
040 # # |a DNLM  |d UiTM  |e rda 
041 0 # |a english 
060 0 0 |a WL 141 
090 0 0 |a WL141  |b O992t 2012 
100 1 # |a Ozaki, Tohru  |d 1944-  |e author 
245 1 0 |a Time series modeling of neuroscience data  |c Tohru Ozaki 
264 # 1 |a Boca Raton, FL  |b CRC Press  |c 2012 
264 # 4 |c ©2012 
300 # # |a xxv, 548 pages  |b illustrations  |c 25 cm 
336 # # |a text  |b txt  |2 rdacontent 
337 # # |a unmediated  |b n  |2 rdamedia 
338 # # |a volume  |b nc  |2 rdacarrier 
490 1 # |a Chapman & Hall/CRC interdisciplinary statistics series 
504 # # |a Includes bibliographical references and index 
520 # # |a Recent advances in brain science measurement technology have given researchers access to very large-scale time series data such as EEG/MEG data (20 to 100 dimensional) and fMRI (140,000 dimensional) data. To analyze such massive data, efficient computational and statistical methods are required. Time Series Modeling of Neuroscience Data shows how to efficiently analyze neuroscience data by the Wiener-Kalman-Akaike approach, in which dynamic models of all kinds, such as linear/nonlinear differential equation models and time series models, are used for whitening the temporally dependent time series in the framework of linear/nonlinear state space models. Using as little mathematics as possible, this book explores some of its basic concepts and their derivatives as useful tools for time series analysis. Unique features include: A statistical identification method of highly nonlinear dynamical systems such as the Hodgkin-Huxley model, Lorenz chaos model, Zetterberg Model, and more Methods and applications for Dynamic Causality Analysis developed by Wiener, Granger, and Akaike A state space modeling method for dynamicization of solutions for the Inverse Problems A heteroscedastic state space modeling method for dynamic non-stationary signal decomposition for applications to signal detection problems in EEG data analysis An innovation-based method for the characterization of nonlinear and/or non-Gaussian time series An innovation-based method for spatial time series modeling for fMRI data analysis The main point of interest in this book is to show that the same data can be treated using both a dynamical system and time series approach so that the neural and physiological information can be extracted more efficiently. Of course, time series modeling is valid not only in neuroscience data analysis but also in many other sciences and engineering fields where the statistical inference from the observed time series data plays an important role 
650 1 2 |a Diagnostic Techniques, Neurological  |x statistics & numerical data 
650 2 2 |a Brain Mapping  |x statistics & numerical data 
650 2 2 |a Time Factors 
650 2 2 |a Diagnostic Techniques, Neurological  |x statistics & numerical data 
650 2 2 |a Brain Mapping  |x statistics & numerical data 
830 # 1 |a Interdisciplinary statistics 
856 4 0 |z Click Here to View Status and Holdings.  |u https://opac.uitm.edu.my/opac/detailsPage/detailsHome.jsp?tid=460223 
964 # # |c BOK  |d CS 
998 # # |a 00250##a002.5.2||00250##b007.2||00255##a007.25.3||00260##a002.8.2||00260##b002.8.4||00260##c002.7.6||00264#1a002.8.2||00264#1b007.2||00300##a003.4.1||00300##b003.6.1||00300##c003.5.1||00500##a002.17.2||00502##a007.9.2||00520##a007.2||00520##b007.2||00538##a003.16.9||00546##a006.11||00730##a006.2.2||00730##d006.4||00730##f006.10||00730##n006.2.2||00730##p006.2.2||