Regression Modeling Methods, Theory, and Computation with SAS

Regression Modeling: Methods, Theory, and Computation with SAS provides an introduction to a diverse assortment of regression techniques using SAS to solve a wide variety of regression problems. The author fully documents the SAS programs and thoroughly explains the output produced by the programs....

Full description

Saved in:
Bibliographic Details
Main Author: Panik, Michael J. (Author)
Format: Book
Language:English
Published: Boca Raton CRC Press 2009
Subjects:
Online Access:Click Here to View Status and Holdings.
Tags: Add Tag
No Tags, Be the first to tag this record!

MARC

LEADER 00000nam a2200000#i 4501
001 wils-460219
005 2023112992315
008 231229t2009 FLU ag# ##001 ##eng#D
020 # # |a 9781420091977  |q hardback 
020 # # |a 1420091972  |q hardback 
040 # # |a DLC  |b eng  |d UiTM  |e rda 
090 0 0 |a QA278.2  |b .P27 2009 
100 1 # |a Panik, Michael J.  |e author 
245 1 0 |a Regression Modeling  |b Methods, Theory, and Computation with SAS  |c Michael Panik 
264 # 1 |a Boca Raton  |b CRC Press  |c 2009 
264 # 4 |c ©2009 
300 # # |a xv, 814 pages  |b illustrations  |c 27 cm 
336 # # |a text  |2 rdacontent 
337 # # |a unmediated  |2 rdamedia 
338 # # |a volume  |2 rdacarrier 
500 # # |a "A Chapman & Hall book." 
504 # # |a Includes bibliographical references (pages 801-805) and index 
520 # # |a Regression Modeling: Methods, Theory, and Computation with SAS provides an introduction to a diverse assortment of regression techniques using SAS to solve a wide variety of regression problems. The author fully documents the SAS programs and thoroughly explains the output produced by the programs. The text presents the popular ordinary least squares (OLS) approach before introducing many alternative regression methods. It covers nonparametric regression, logistic regression (including Poisson regression), Bayesian regression, robust regression, fuzzy regression, random coefficients regression, L1 and q-quantile regression, regression in a spatial domain, ridge regression, semiparametric regression, nonlinear least squares, and time-series regression issues. For most of the regression methods, the author includes SAS procedure code, enabling readers to promptly perform their own regression runs. 
650 # 0 |a Regression analysis  |x Data processing 
650 # 0 |a SAS (Computer program language)  |x Data processing 
856 4 0 |z Click Here to View Status and Holdings.  |u https://opac.uitm.edu.my/opac/detailsPage/detailsHome.jsp?tid=460219 
964 # # |c BOK  |d CS 
998 # # |a 00264#1a002.8.2||00264#1b002.8.4||00300##a003.4.1||00300##b003.6.1||00300##c003.5.1||00500##a002.17.2||00520##a007.2||00520##b007.2||