Numerical Solution of Partial Differential Equations Finite Difference Methods

Substantially revised, this authoritative study covers the standard finite difference methods of parabolic, hyperbolic, and elliptic equations, and includes the concomitant theoretical work on consistency, stability, and convergence. The new edition includes revised and greatly expanded sections on...

Full description

Saved in:
Bibliographic Details
Main Author: Smith, G. D. (Gordon D.) (Author)
Format: Book
Language:English
Published: Oxford [Oxfordshire] Oxford University Press 1985 (2010 printing)
Edition:Third Edition
Series:Oxford applied mathematics and computing science series
Subjects:
Online Access:Click Here to View Status and Holdings.
Tags: Add Tag
No Tags, Be the first to tag this record!

MARC

LEADER 00000n a2200000 a 4501
001 wils-450631
005 2019417113824
020 # # |a 0198596413  |q paperback 
020 # # |a 0198596502  |q paperback 
020 # # |a 9780198596509  |q paperback 
040 # # |a DLC  |d UiTM  |e rda 
041 0 # |a eng 
090 0 0 |a QA374  |b .S56 1985 
100 1 # |a Smith, G. D.  |e author  |q (Gordon D.) 
245 1 0 |a Numerical Solution of Partial Differential Equations  |b Finite Difference Methods  |c G. D. SMITH 
250 # # |a Third Edition 
264 # 1 |a Oxford [Oxfordshire]  |b Oxford University Press  |c 1985 (2010 printing) 
264 # 4 |c ©1985 
300 # # |a xi, 337 pages  |b illustrations  |c 22 cm 
336 # # |a text  |2 rdacontent 
337 # # |a unmediated  |2 rdamedia 
338 # # |a volume  |b rdacarrier 
490 1 # |a Oxford applied mathematics and computing science series 
504 # # |a Includes bibliographical references (p. 331-333) and index 
520 # # |a Substantially revised, this authoritative study covers the standard finite difference methods of parabolic, hyperbolic, and elliptic equations, and includes the concomitant theoretical work on consistency, stability, and convergence. The new edition includes revised and greatly expanded sections on stability based on the Lax-Richtmeyer definition, the application of Pade approximants to systems of ordinary differential equations for parabolic and hyperbolic equations, and a considerably improved presentation of iterative methods. A fast-paced introduction to numerical methods, this will be a useful volume for students of mathematics and engineering, and for postgraduates and professionals who need a clear, concise grounding in this discipline. 
526 0 # |b CS773  |5 CS 
526 0 # |a Fluid Mechanics (MAT)  |b Master of sciences applied mathematics  |5 Faculty of computer and mathematical sciences 
650 # 0 |a Difference equations  |x Numerical solutions 
650 # 0 |a Differential equations, Partial  |x Numerical solutions 
856 4 0 |z Click Here to View Status and Holdings.  |u https://opac.uitm.edu.my/opac/detailsPage/detailsHome.jsp?tid=450631 
998 # # |a 00250##a002.5.2||00250##b007.2||00264#1a002.8.2||00264#1b007.2||00300##a003.4.1||00300##b003.6.1||00300##c003.5.1||00520##a007.2||00520##b007.2||