Biscuits of Number Theory

You are probably wondering, 'What exactly are biscuits of number theory?' In this book, the editors have selected easily digested bite-sized articles and notes which aid an understanding of number theory. This is a collection of articles chosen for being exceptionally well written and capa...

Full description

Saved in:
Bibliographic Details
Corporate Author: Mathematical Association of America
Other Authors: Brown, Ezra Ezra A., Benjamin, Arthur
Format: Book
Language:English
Published: Washington, D.C. Mathematical Association of America 2009
Series:Dolciani mathematical expositions v. 34
Subjects:
Online Access:Click Here to View Status and Holdings.
Tags: Add Tag
No Tags, Be the first to tag this record!

MARC

LEADER 00000nam a2200000#i 4501
001 wils-438280
005 2020912114720
008 t 000 eng#D
020 # # |a 088385340X 
020 # # |a 9780883853405  |q hardback 
040 # # |a WNE  |d ITMB  |e rda 
041 0 # |a eng 
090 0 0 |a QA241  |b .B57 2009 
100 1 # |e author 
245 0 0 |a Biscuits of Number Theory  |c edited by Arthur T. Benjamin and Ezra Brown 
264 # 1 |a Washington, D.C.  |b Mathematical Association of America  |c 2009 
264 # 4 |c @2009 
300 # # |a xiii, 311 pages  |b illustrations  |c 27 cm 
336 # # |a text  |2 rdacontent 
337 # # |a unmediated  |2 rdamedia 
338 # # |a volume  |2 rdacarrier 
490 1 # |a Dolciani mathematical expositions  |v v. 34 
504 # # |a Includes bibliographical references 
520 # # |a You are probably wondering, 'What exactly are biscuits of number theory?' In this book, the editors have selected easily digested bite-sized articles and notes which aid an understanding of number theory. This is a collection of articles chosen for being exceptionally well written and capable of being appreciated by anyone who has taken (or is taking) a first course in number theory. The list of authors is outstanding, and the chapters cover arithmetic, primes, irrationality, sums of squares and polygonal numbers, Fibonacci numbers, number theoretic functions and elliptic curves, cubes, and Fermat's last theorem. As with any anthology, you don't have to read the chapters in order, you can dive in anywhere, making this book ideal for use as a textbook supplement for a number theory course. 
650 # 0 |a Fibonacci numbers 
650 # 0 |a Arithmetic 
650 # 0 |a Number theory 
650 # 0 |a Fermat's last theorem 
700 1 # |a Brown, Ezra  |q Ezra A. 
700 # # |a Benjamin, Arthur 
710 1 # |a Mathematical Association of America 
856 4 0 |z Click Here to View Status and Holdings.  |u https://opac.uitm.edu.my/opac/detailsPage/detailsHome.jsp?tid=438280 
964 # # |c BOK  |d CS 
998 # # |a 00264#1a002.8.2||00264#1b002.8.4||00300##a003.4.1||00300##b003.6.1||00300##c003.5.1||00520##a007.2||00520##b007.2||01700##a0011.2.2||