INTRODUCTION TO MATHEMATICAL PROOFS A TRANSITION

Introduction to Mathematical Proofs: A Transition facilitates a smooth transition from courses designed to develop computational skills and problem solving abilities to courses that emphasize theorem proving. It helps students develop the skills necessary to write clear, correct, and concise proofs....

Full description

Saved in:
Bibliographic Details
Main Author: Roberts, Charles E. 1942 (Author)
Format: Book
Language:English
Published: Boca Raton CRC Press 2010
Series:Textbooks in mathematics (Boca Raton, Fla.)
Subjects:
Online Access:Click Here to View Status and Holdings.
Tags: Add Tag
No Tags, Be the first to tag this record!

MARC

LEADER 00000cam#a2200000#i#4501
001 wils-424440
005 202181516143
008 220613t20102010FLU ag# ##001 ##eng#D
020 # # |a 9781420069556  |q hardback 
020 # # |a 1420069551  |q hardback 
040 # # |a DLC  |b eng  |c DLC  |d UiTM  |e rda 
041 0 # |a eng 
090 0 0 |a QA9.54  |b .R63 2010 
100 1 # |a Roberts, Charles E.  |d 1942  |e author 
245 1 0 |a INTRODUCTION TO MATHEMATICAL PROOFS  |b A TRANSITION  |c Charles E. Roberts 
264 # 1 |a Boca Raton  |b CRC Press  |c 2010 
264 # 4 |c ©2010 
300 # # |a viii, 425 pages  |b illustrations  |c 25 cm 
336 # # |a text  |2 rdacontent 
337 # # |a unmediated  |2 rdamedia 
338 # # |a volume  |2 rdacarrier 
490 1 # |a TEXTBOOKS in MATHEMATICS 
500 # # |a "A Chapman & Hall book." 
504 # # |a Includes bibliographical references and index 
520 # # |a Introduction to Mathematical Proofs: A Transition facilitates a smooth transition from courses designed to develop computational skills and problem solving abilities to courses that emphasize theorem proving. It helps students develop the skills necessary to write clear, correct, and concise proofs. Unlike similar textbooks, this one begins with logic since it is the underlying language of mathematics and the basis of reasoned arguments. The text then discusses deductive mathematical systems and the systems of natural numbers, integers, rational numbers, and real numbers. It also covers elementary topics in set theory, explores various properties of relations and functions, and proves several theorems using induction. The final chapters introduce the concept of cardinalities of sets and the concepts and proofs of real analysis and group theory. In the appendix, the author includes some basic guidelines to follow when writing proofs. 
650 # 0 |a Proof theory  |v Textbooks 
650 # 0 |a Logic, Symbolic and mathematical  |v Textbooks 
830 # 1 |a Textbooks in mathematics (Boca Raton, Fla.) 
856 4 0 |z Click Here to View Status and Holdings.  |u https://opac.uitm.edu.my/opac/detailsPage/detailsHome.jsp?tid=424440 
964 # # |c BOK  |d CS 
998 # # |a 00130##a006.2.2||00250##a002.5.2||00250##b002.7.6||00255##a007.25.3||00260##a002.8.2||00260##b002.7.6||00260##c002.7.6||00264#1a002.8.2||00264#1b002.8.4||00300##a003.4.1||00300##b003.6.1||00300##c003.5.1||00500##a002.17.2||00502##a007.9.2||00520##a007.2||00520##b007.2||00538##a003.16.9||00546##a006.11||00730##a006.2.2||00730##d006.4||00730##f006.10||00730##n006.2.2||00730##p006.2.2||