Information discovery on electronic health records

Assembling a truly interdisciplinary team of experts, the book tackles medical privacy concerns, the lack of standardization for the representation of EHRs, missing or incorrect values, and the availability of multiple rich health ontologies. It looks at how to search the EHR collection given a user...

Full description

Saved in:
Bibliographic Details
Other Authors: Hristidis, Vagelis
Format: Book
Published: Boca Raton, FL Chapman & Hall/CRC Press 2010
Series:Chapman & Hall/CRC data mining and knowledge discovery series
Subjects:
Online Access:Click Here to View Status and Holdings.
Tags: Add Tag
No Tags, Be the first to tag this record!

MARC

LEADER 00000n a2200000 a 4501
001 wils-421552
005 20181279575
020 # # |a 9781420090383 
020 # # |a 1420090380 
040 # # |a DNLM  |d ITMB 
090 0 0 |a WX173  |b I43 2010 
245 0 0 |a Information discovery on electronic health records  |c edited by Vagelis Hristidis 
260 # # |a Boca Raton, FL  |b Chapman & Hall/CRC Press  |c 2010 
300 # # |a xviii, 313 p.  |b ill.  |c 25 cm 
490 1 # |a Chapman & Hall/CRC data mining and knowledge discovery series 
504 # # |a Includes bibliographical references and index 
520 # # |a Assembling a truly interdisciplinary team of experts, the book tackles medical privacy concerns, the lack of standardization for the representation of EHRs, missing or incorrect values, and the availability of multiple rich health ontologies. It looks at how to search the EHR collection given a user query and return relevant fragments from the EHRs. It also explains how to mine the EHR collection to extract interesting patterns, group entities to various classes, or decide whether an EHR satisfies a given property. Most of the book focuses on textual or numeric data of EHRs, where more searching and mining progress has occurred. A chapter on the processing of medical images is also included. Maintaining a uniform style across chapters and minimizing technical jargon, this book presents the various ways to extract useful knowledge from EHRs. It skillfully discusses how EHR data can be effectively searched and mined. 
650 # 0 |a Electronic Health Records 
650 # 0 |a Confidentiality 
650 # 0 |a Data Mining 
700 1 # |a Hristidis, Vagelis 
856 4 0 |z Click Here to View Status and Holdings.  |u https://opac.uitm.edu.my/opac/detailsPage/detailsHome.jsp?tid=421552 
964 # # |c BOK  |d CS 
998 # # |a 00130##a006.2.2||00250##a002.5.2||00250##b002.5.3||00255##a007.25.3||00260##a002.8.2||00260##b002.8.4||00260##c002.7.6||00264#1a002.8.2||00264#1b002.8.4||00300##a003.4.1||00300##b003.6.1||00300##c003.5.1||00500##a002.17.2||00502##a007.9.2||00520##a007.2||00520##b007.2||00538##a003.16.9||00546##a006.11||00730##a006.2.2||00730##d006.4||00730##f006.10||00730##n006.2.2||00730##p006.2.2||