Methods for Computational Gene Prediction

Inferring the precise locations and splicing patterns of genes in DNA is a difficult but important task, with broad applications to biomedicine. The mathematical and statistical techniques that have been applied to this problem are surveyed and organized into a logical framework based on the theory...

Full description

Saved in:
Bibliographic Details
Main Author: Majoros, William H. (Author)
Format: Book
Language:English
Published: Cambridge Cambridge University Press 2007
Subjects:
Online Access:Click Here to View Status and Holdings.
Tags: Add Tag
No Tags, Be the first to tag this record!

MARC

LEADER 00000nam a2200000#i 4501
001 wils-386886
005 2021510133611
008 210610t20072007XXK ag# |#001 #deng#D
020 # # |a 9780521706940  |q paperback 
020 # # |a 0521706947  |q paperback 
020 # # |a 9780521877510  |q hardback 
020 # # |a 0521877512  |q hardback 
040 # # |a UKM  |b eng  |c UiTM  |d rda 
041 0 # |a English 
060 0 0 |a QU 58.5 
090 0 0 |a QU58.5  |b M234m 2007 
100 1 # |a Majoros, William H.  |e author 
245 1 0 |a Methods for Computational Gene Prediction  |c William H. Majoros 
264 # 1 |a Cambridge  |b Cambridge University Press  |c 2007 
264 # 4 |c ©2007 
300 # # |a xvii, 430 pages  |b illustrations  |c 26 cm 
336 # # |a text  |b txt  |2 rdacontent 
337 # # |a unmediated  |b n  |2 rdamedia 
338 # # |a volume  |b nc  |2 rdacarrier 
504 # # |a Includes bibliographical references (p. 390-407) and index 
520 # # |a Inferring the precise locations and splicing patterns of genes in DNA is a difficult but important task, with broad applications to biomedicine. The mathematical and statistical techniques that have been applied to this problem are surveyed and organized into a logical framework based on the theory of parsing. Both established approaches and methods at the forefront of current research are discussed. Numerous case studies of existing software systems are provided, in addition to detailed examples that work through the actual implementation of effective gene-predictors using hidden Markov models and other machine-learning techniques. Background material on probability theory, discrete mathematics, computer science, and molecular biology is provided, making the book accessible to students and researchers from across the life and computational sciences. This book is ideal for use in a first course in bioinformatics at graduate or advanced undergraduate level, and for anyone wanting to keep pace with this rapidly-advancing field 
650 1 2 |a Genomics  |x methods 
650 2 2 |a Computational Biology 
650 2 2 |a Mathematics  |x methods 
856 4 0 |z Click Here to View Status and Holdings.  |u https://opac.uitm.edu.my/opac/detailsPage/detailsHome.jsp?tid=386886 
998 # # |a 00264#1a002.8.2||00264#1b002.8.4||00300##a003.4.1||00300##b003.6.1||00300##c003.5.1||00520##a007.2||00520##b007.2||