Statistical data mining and knowledge discovery

Massive data sets pose a great challenge to many cross-disciplinary fields, including statistics. The high dimensionality and different data types and structures have now outstripped the capabilities of traditional statistical, graphical, and data visualization tools. Extracting useful information f...

Full description

Saved in:
Bibliographic Details
Main Author: Bozdogan, Hamparsum (Author)
Format: Book
Published: Boca Raton Chapman & Hall/CRC 2004
©2004
Subjects:
Online Access:Click Here to View Status and Holdings.
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Massive data sets pose a great challenge to many cross-disciplinary fields, including statistics. The high dimensionality and different data types and structures have now outstripped the capabilities of traditional statistical, graphical, and data visualization tools. Extracting useful information from such large data sets calls for novel approaches that meld concepts, tools, and techniques from diverse areas, such as computer science, statistics, artificial intelligence, and financial engineering. Statistical Data Mining and Knowledge Discovery brings together a stellar panel of experts to discuss and disseminate recent developments in data analysis techniques for data mining and knowledge extraction. This carefully edited collection provides a practical, multidisciplinary perspective on using statistical techniques in areas such as market segmentation, customer profiling, image and speech analysis, and fraud detection. The chapter authors, who include such luminaries as Arnold Zellner, S. James Press, Stephen Fienberg, and Edward K. Wegman, present novel approaches and innovative models and relate their experiences in using data mining techniques in a wide range of applications.
Physical Description:588 pages illustrations 24 cm
Bibliography:Includes bibliographical references and index
ISBN:1584883448