Power Series From To Computational Point Of View (Universitext)

The purpose of this book is to explain the use of power series in performing concrete calculations, such as approximating definite integrals or solutions to differential equations. This focus may seem narrow but, in fact, such computations require the understanding and use of many of the important t...

Full description

Saved in:
Bibliographic Details
Main Author: Smith, K.T (Author)
Format: Book
Language:English
Published: New York Springer Verlag 1987
Subjects:
Online Access:Click Here to View Status and Holdings.
Tags: Add Tag
No Tags, Be the first to tag this record!

MARC

LEADER 00000n a2200000 a 4501
001 wils-235718
005 201982493450
020 # # |a 0387965165  |q paperback 
040 # # |a UiTM  |e rda 
041 0 # |a eng  |h eng 
090 0 0 |a QA331  |b .S618 1987 
100 1 # |a Smith, K.T  |e author 
245 1 1 |a Power Series From To Computational Point Of View  |b (Universitext)  |c K.T.Smith 
264 # 1 |a New York  |b Springer Verlag  |c 1987 
300 # # |a viii, 131pages  |c 23cm 
336 # # |a text  |2 rdacontent 
337 # # |a unmediated  |2 rdamedia 
338 # # |a volume  |2 rdacarrier 
500 # # |a Inlcudes index 
520 # # |a The purpose of this book is to explain the use of power series in performing concrete calculations, such as approximating definite integrals or solutions to differential equations. This focus may seem narrow but, in fact, such computations require the understanding and use of many of the important theorems of elementary analytic function theory, for example Cauchy's Integral Theorem, Cauchy's Inequalities, and Analytic Continuation and the Monodromy Theorem. These computations provide an effective motivation for learning the theorems, and a sound basis for understanding them. 
650 # 0 |a Analytic functions 
650 # 0 |a Power series 
856 4 0 |z Click Here to View Status and Holdings.  |u https://opac.uitm.edu.my/opac/detailsPage/detailsHome.jsp?tid=235718 
964 # # |c BOK  |d 01 
998 # # |a 00264#1a002.8.2||00264#1b002.8.4||00300##a003.4.1||00300##b003.6.1||00300##c003.5.1||00500##a002.17.2||00520##a007.2||00520##b007.2||